
MULTICAST TREE CONSTRUCTION IN DIRECTED NETWORKS

J. Eric Klinker
Center for High Assurance Computing Systems

Naval Research Laboratory
Washington, DC 20375
klinker@itd.nrl.navy.mil

Abstract
Significant interest exists within the military in

moving towards an integrated services environment where
traditional network services such as ftp, telnet, and e-mail can
co-exist with real-time services such as voice, video, and
satellite imagery. Multicast routing is an effective means of
providing the efficient utilization of network resources
required to realize such an environment.

Traditional multicast routing algorithms assume a
symmetric network topology. Many military communication
assets are either asymmetric in their load or asymmetric in
capacity (a good example is Direct Broadcast Satellite). In
addition, many military communication assets are bandwidth
constrained, and routing symmetrically may further contribute
to congestion. Therefore, multicast tree construction which
tolerates network asymmetry is desirable for many military
communication environments.

This paper proposes an algorithm for constructing
shared multicast distribution trees in networks with
asymmetric link capacities or loads. The algorithm tolerates
asymmetry by building distinct, loop-free, sender and receiver
paths onto a shared delivery tree. Additionally, the algorithm
exhibits desirable security properties. Simulation results are
presented that demonstrate the lower tree cost and better load
balancing characteristics of the resultant trees over shortest
path trees, with only a modest increase in path length.

Introduction
Current multicast routing protocols were developed

under a paradigm that assumes network link symmetry. Many
fixed networks and satellite or wireless networks exhibit
asymmetry in capacity or load. In addition, traditional
multicast routing algorithms utilize "reverse-path" routing
which in asymmetric networks may lead to poor routes.
Several studies [10, 3] have been made that confirm the
existence of network asymmetry in the fixed networks that
make up the internet

There are two basic approaches to multicast tree
construction. The first is a shared multicast tree [1] and the
other is a source rooted tree [13, 9]. The shared tree approach
uses a single tree rooted at some center that is shared by all
participants. In the source rooted approach, each sender builds
a separate tree rooted at itself.

The algorithm presented in this paper builds a shared
tree that can tolerate network asymmetry. To build this shared
tree, the algorithm creates forwarding state in multicast
capable routers. This state represents disjoint, loop-free, paths
for senders and receivers.

The results of simulations conducted over varying
topologies show that the resultant trees provide a lower tree
cost than source rooted trees with only a modest increase in
end-to-end delay.

Tree Construction
The join process is similar to the CBT approach [1]

with some slight differences due to the asymmetry. A sender
joins a tree by propagating a join-request message along the
shortest path to the tree center. When the join-request reaches
the center, a join-ACK message is sent back along the same
path. A receiver joins in a similar manner by propagating a
join-request to the center along the shortest path. The join-
ACK is then sent back to the receiver along the shortest return
path (which may be different than the path taken by the join-
request). Since senders must explicitly join the tree (and thus
the group) this violates the traditional multicast model of
"senders just send"1. However, this has some advantageous
security properties in that sources can be authenticated before
being admitted to the tree. The disjoint paths could result in
routing loops if only group state is stored (as in CBT). Thus,
to prevent routing loops the protocol must store source state as
well, which has some scaling implications [7]. Thus, each
router maintains a sender list (SL) per active group. The SL
contains the following information [Sender ID, incoming
interface, {set of outgoing interfaces (OGI)}].

The algorithm for adding a new sender is given
below:

key

gm identifies the multicast group m

G identifies the set of all multicast groups a router is aware of

Sm,i identifies source i for multicast group m

Rm, i identifies receiver i for multicast group m

Ni identifies node i, a multicast capable router

Ncenter identifies the node corresponding to the center of the multicast tree

SLm identifies a source list for multicast group m at a multicast capable
router

SLm[n] identifies the nth element in the source list for multicast group m,

MSL represents the modified source list for a join-ACK packet

Iogi, i identifies the set of outgoing interfaces for source i in the SL

In identifies the interface corresponding to the next hop towards a
destination

Ip identifies the interface corresponding to the previous hop of a

packet

Iprune identifies the interface a prune was received on

Rt. an array that records the hop-by-hop route a packet has taken.

1 A mechanism for non-member senders could be implemented by
building wildcard sender (*,G) state. The set of outgoing interfaces
for such state is simply the union of all other outgoing interface sets.
Non-member senders, first send to the tree center. The data is then
forwarded according to (*,G) state.

2

procedure Send_Join_Req(Sm,i , gm)

procedure Recv_Join_Req (Sm,i , Ip , gm)
begin

if gm ∉ G
SLm[0] = [Sm,i , Ip , Icenter]

else

SLm[n+1] = [Sm,i , Ip , {Iogi ∀ Sm ∈ SL m
}]

for all I ∈ Iogi ∀ Sm ∈ SL m
 do

Send_Build_State(Sm,i)

end for
end if

if N Ni center≠
Send_Join_Req(Sm,i , gm)

end if
end Recv_Join_Req

procedure Recv_Build_State(S Im,i p,)

begin

if Sm,i ∉ SLm

SLm[n+1] = [Sm,i , Ip , {Iogi ∀ Sm ∈ SL m
}]

for all I ∈ Iogi ∀ Sm ∈ SL m
 do

Send_Build_State(Sm,i)

end for
else

Send_S_Prune(Ip , Sm,i)

end if
end Recv_Build_State

procedure Recv_S_Prune(Iprune , Sm,i)

begin

Iogi, i = Iogi, i ∩ ′Iprune

if Iogi, i = ∅
Send_S_Prune(Ip,i , Sm,i)

SLm = SLm - Sm, i
end if

end Recv_S_Prune

This algorithm is illustrated with the following example.
Consider the topology in Figure 1. The multicast capable
routers are lettered, and the links between them are numbered
to identify specific interfaces. The solid arrows represent the
current multicast delivery tree at the time the new sender
wishes to join. The shaded arrows represent the path the join-
request for the new sender (S3) takes to the tree center (router
g). Build_State messages are generated at routers b and g and
a prune must occur along the path [b, e, g]. Table 1. shows the
state of the tree before the join-request, after all Build_State
messages have reached their destinations, and after pruning is
complete.

Figure 1. illustrates why the Build_State messages must be
sent at each on-tree router. If the Build_State messages were
sent only when the join-request reached the center, the Build-
State message that reached router b would encounter the
sender in the source list and the message would not get
propagated out interfaces 3 or 4. This is eliminated if

Build_State messages are generated at router b as well as the
center.

S3

R2 d

1
3

new sender

S1 S2R1
R3

a b

c e

f

g h

2

4

5

6

7

8

9 10

11center

Figure 1. New Sender Example

After Build-State
Messages

Router Current State Pruned State

S1, 9, {7, 11}
S2, 10, {7, 11}g

S1, 11, {R3}
S2, 11, {R3}

S1, 9, {7, 11}
S2, 10, {7, 11}
S3, 6, {11}

h

No Sendersa

S1, 8, {3, 4}
S2, 8, {3, 4}b

S1, 4, {R1}
S2, 4, {R1}c

S1, 3, {R2}
S2, 3, {R2}d

S1, 7, {8}
S2, 7, {8}

S1, 7, {8}
S2, 7, {8}
Remove S3

e

No Senders

S1, 9, {7, 11}
S2, 10, {7, 11}
S3, 6, {7, 11}

S1, 11, {R3}
S2, 11, {R3}
S3, 11, {R3}

S3, 1, {2}

S1, 8, {3, 4}
S2, 8, {3, 4}
S3, 2, {3, 4, 5}

S1, 4, {R1}
S2, 4, {R1}
S3, 4, {R1}

S1, 3, {R2}
S2, 3, {R2}
S3, 3, {R2}

S1, 7, {8}
S2, 7, {8}
S3, 7, {8}

S3, 5, {6}f

Table 1. Adding a New Sender

The algorithm for adding new receivers is presented below:
procedure Center_Recv_Join_Req(Rm, i)

begin

for all {Sm, i ∈ SLm | In ∉ Iogi, i} do

MSL = MSL + Sm, i
end for

Rt[0] = Ncenter

Send_Join_ACK(MSL, Rm, i , Rt)

end Center_Recv_Join_Req

3

procedure Recv_Join_ACK(MSL, Rm, i , Rt)

begin

if Ni ≠ Rm

for all {Sm, i ∈ MSL | Sm, i ∉ SLm} do

SLm[n+1] = [Sm, i , Ip , In]
end for

for all {Sm, i ∈ SLm | Sm, i ∉ MSL} do

if In ∉ Iogi, i

Iogi, i = Iogi, i ∪ In

MSL = MSL + Sm, i
end if

end for

for all {Sm, i ∈ MSL | Sm, i ∈ SLm} do

Send_R_Prune(Sm, i , Rt, Rm, i ,)

if In ∈ Iogi, i

MSL = MSL - Sm, i
else

Iogi, i = Iogi, i ∪ In

end if
end for

Rt[n+1] = Ni

Send_Join_ACK(MSL, Rm, i , Rt)

end if
end Recv_Join_ACK

procedure Recv_R_Prune(Sm, i , Rt, Rm, i)

begin

if | Iogi, i | > 1 or Ni = Ncenter

Iogi, i = Iogi, i ∩ ′In

else

SLm = SLm - Sm, i
Rt[n] = null

Send_R_Prune(Sm, i , Rt, Rm, i)

end if
end Recv_R_Prune

Consider the topology in Figure 2. Again the multicast
capable routers are lettered, and the interconnecting links are
numbered to identify interfaces. The solid lines represent the
multicast delivery tree at the time the new receiver, (Ri)
located at router f, is to be joined to the tree. The join-request
propagates to the center and the join-ACK proceeds to the
receiver along the path [a, b, c, d, e, f]. Shaded arrows
represent links that require new state. The current state at
each router is given in Table 2. As the join-ACK propagates
towards the receiver, the state at each router is changed to the
New State given in Table 2. The state of the Modified Sender
List (MSL) is also shown in this column. When the join-ACK
reaches router d it encounters S1 d's SL while S1 is also
present in the MSL. Thus, for S1, a shorter path to router d
exists and S1 must be pruned from the path traversed so far.
The state of any router that is different as a result of the prune
message is presented in the last column of Table 2.
Some additional functions are required in the join-ACK to
accommodate the pruning process. In order to determine the
path along which to send the prune message, the join-ACK
must record its route as it propagates to the receiver. This path

may also be discerned from the state information at each
router (i.e. using the incoming and outgoing interfaces from

a f
center multi-hop path

cb d e

S1

S2

to other receivers

Ri
1

2

3

4 5

6

7
8

9

10

Figure 2. New Receiver Example

Router Pruned StateNew StateCurrent State

a

b

c

d

e

f

S1, 10, {2}
S2, 1, {2}

S1, 2, {3}
S2, 2, {3}

No Senders

S1, 6, {7}

S1, 7, {8}

No Senders

No Change
MSL = f
S1, 2, {3, 4}
S2, 2, {3, 4}
MSL = {S1, S2}

S1, 4, {5}
S2, 4, {5}
MSL = {S1, S2}
S1, 6, {7}
S2, 5, {7}
MSL = {S2}
S1, 7, {8, 9}
S2, 7, {9}
MSL = {S1, S2}

S1, 9, {Ri}
S2, 9, {Ri}

S1, 2, {3}
S2, 2, {3, 4}

Remove S1
S2, 4, {5}

Generate
Prune

Table 2. Adding a New Receiver

the sender list). When the prune message eventually
encounters a set of OGIs that is larger than one it must
determine which interface to prune from this set. Given the
identity of the receiver, the interface corresponding to the next
hop to the receiver should be pruned. Thus, the prune
message must know the sender id that it is pruning and the
receiver id it is pruning that sender for.

The tree construction protocol relies on several
underlying mechanisms. The protocol uses the underlying
unicast routing protocol to forward the control packets which
construct the tree. It is assumed that Type of Service (ToS)
routing can be performed to enforce policy during the tree
construction. Tree construction also relies on protocols like
IGMP [4] to reach a router that is group aware.

Since the protocol builds shared trees around a given
center, some mechanism of informing participants of (group,
center) mappings is required [2, 6]. An additional protocol
which selects tree centers [12] is desirable as the quality of the
shared tree will be highly dependent on the center selected.

4

Performance Evaluation.
Simulations were carried out to determine how the

shared trees compared to the source based trees when
reservation of resources was required. Resource reservation is
required in any environment where bandwidth is constrained.
Many military communication systems consist of low
bandwidth links [8]. The algorithm was not compared to
symmetric based algorithms since the difference in tree cost
would merely be a reflection of the degree of asymmetry
present in the network environment. The simulations were
conducted to determine what penalties or benefits the shared
trees incurred over their source based counterparts.

A random network was generated using Waxman's
RG1 and RG2 algorithms [14]. Topologies consisted of
several clusters, generated using RG2, that were meant to
simulate separate routing domains. The clusters were
interconnected with a network generated using RG1 and RG2.
Topologies varied from 10-100 nodes distributed over 1-10
clusters. Link cost was defined as a uniform random variable
between 1-100 for intra-cluster links and 1-1000 for inter-
cluster links. Average node degree was kept in the interval
[3,5] for each topology. The simulations also allowed several
sessions to be built on top of each other so that load balancing
over several sessions could be studied. The shared trees were
constructed as per the protocols presented earlier The shared
trees were constructed around centers selected using the
protocol given in [12]. The source based trees were
constructed as the forward cost shortest path from the source
to each receiver (much like MOSPF [9]).

Tree cost for each tree is calculated to represent the
amount of resources that would have to be reserved over the
entire tree for a specified number of concurrent senders. The
reservation algorithm reserves the minimum amount of
resources for any combination of concurrent senders. The tree
cost is calculated by determining the number of senders that
use each link on the tree. Let Si, j be the number of senders

that use the link from node i to node j and di, j be the cost to

use that link. Let ss be the number of simultaneous senders.
The cost for that link, ci, j , is given by ci, j =

min(ss, Si, j)di, j . The total tree cost, ctot , is given by

ctot = ci, j
j=1

N

å
i=1

N

å . The average path length is calculated as

Average Path Lengt

Multicast Session

A
v
e
ra

g
e

P
a
th

L
e
n
g
th

0

2

4

6

8

1 0

0 2 4 6

Shared Tree

Source Tree

Figure 3. Average Path Length

Multicast Session

T
re

e

C
o

st

(x
1

0
E
3

)

0

5

1 0

1 5

2 0

2 5

0 2 4 6

Shared Tree

Source Tree

Figure 4. Tree Cost per Session

the average number of hops experienced by a sender to all
receivers averaged over all senders. This is expected to be
proportional to the delay experienced by a packet.

Figures 3, 4, and 5 show several characteristic results
over a topology of 3 clusters each with 30 nodes. Five
multicast sessions, each with 12 senders and 12 receivers
evenly distributed over all domains, were constructed
consecutively on top of each other. Figure 3 shows the
average path length experienced by each sender per multicast
session. As expected, the source based trees experience
shorter paths. Figure 4 shows the tree cost per session, with 3
of the senders active. Up to 3 senders sharing a link from any
previous session are considered when calculating tree cost.
By observing the slope of the two plots it is evident that the
shared tree distributes network load better over many sessions.
Figure 5, the tree cost of each tree is examined as the number
of concurrent senders is increased. The source rooted trees
peaks more rapidly then levels off, while the shared tree cost
tends to increase as a constant rate. For larger topologies with
larger numbers of concurrent senders it is possible for the cost
of the shared tree to exceed the source tree. The source tree
contains many links but these links are shared by only a few
senders. The shared tree contains fewer links which are
shared by most senders.

Figures 6 and 7 show representative results when the
node degree of the topology is increased. As the node degree
increases the cost of the source tree peaks more rapidly, and
the crossover point for the shared tree is achieved sooner as

Node degree 3

Simultaneous Senders

T
re

e

C
o

st

(x
1

0
E
3

)

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

0 5 1 0 1 5

Shared Tree

Source Tree

Figure 5. Tree Cost for Node Degree 3

5

Node degree 4

Simultaneous Senders

T
re

e

C
o

st

(x
1

0
E
3

)

0

5

1 0

1 5

2 0

2 5

3 0

0 5 1 0 1 5

Shared Tree

Source Tree

Figure 6. Tree Cost for Node Degree 4

Node degree 5

Simultaneous Senders

T
re

e

C
o

st

(x
1

0
E
3

)

0

5

1 0

1 5

2 0

2 5

0 5 1 0 1 5

Shared Tree

Source Tree

Figure 7. Tree Cost for Node Degree 5

the relative distance between the two curves is smaller.

Summary
For the number of nodes simulated, the results show

that the shared trees do provide a lower tree cost than the
source based trees with only a modest increase in delay.

However, the tree construction algorithm is not a
complete multicast routing protocol. The protocol requires an
additional mechanism to tear down state when participants
leave or time out. Also several mechanisms should be
borrowed from CBT [1] to maintain the tree in the event of
failures and an additional ACK may be required to
acknowledge the joining of a branch from center to receiver.
The algorithm should also be optimized (e.g. consolidate some
of the for loops).

The algorithm is expensive in state and thus, may not
be appropriate for some military applications [7]. However,
the size of the router state is comparable to PIM [5], the
predominate commercial multicast routing protocol. Future
work should involve extending the scope of the simulations.
The simulator that was constructed has almost reached it's
limit in terms of topology size and the size of the interactions
it is capable of simulating. Many interesting military
applications have characteristics outside the scope of the
current simulation results. In addition, the results presented
have interesting characteristics at the limits of the simulator.

References

[1] A. Ballardie, P. Francis, and J. Crowcroft, "Core Based
Trees (CBT) an architecture for scalable interdomain multicast
routing", in ACM SIGCOMM, September 1993

[2] B. Cain, S. Deering, and A. Thyagarajan, Internet
Group Management Protocol Version 3, Work in progress.

[3] K. Claffy, G. Polyzos, and H. W. Braun, "Traffic
Characteristics of the T1 NSFNET Backbone," Proc. of IEEE
INFOCOM '93, March 1993.

[4] S. Deering, Host Extensions for IP Multicasting, RFC
1112, Network Working Group, August 1989.

[5] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.
Liu, and L. Wei, Protocol Independent Multicasting (PIM),
Work in progress.

[6] M. Handley, J. Crowcroft, and I. Wakeman,
Hierarchical Protocol Independent Multicast (HPIM), Work
in progress.

[7] E. Klinker and S. Batsell, "The Implications of a
Distributed Computing Paradigm on Multicast Routing", Proc.
of 1995 IEEE Military Communications Conf., November,
1995.

[8] J. Macker, et. al., "QoS Requirements for Military
Applications", Submitted to 1996 IEEE Military
Communications Conf.

[9] J. Moy, Multicast Extensions to OSPF, RFC 1584,
Network Working Group, March 1994.

[10] V. Paxson, "Growth Trends in Wide-Area TCP
Connections," IEEE Network, August 1994.

[11] S. Shukla, E. Klinker, and E. Boyer, "Multicast Tree
Construction in Network Topologies with Asymmetric Link
Loads," TR NPS-EC-94-012, Naval Postgraduate School,
September, 1994.

[12] S. Shukla, E. Klinker, and R. Voigt, "A Protocol for
Locating Multicast Data Distribution Centers Using
Participant Registration", TR NPS-EC-095-005, Naval
Postgraduate School, February 1995.

[13] D. Waitzman, C. Partridge, and S. Deering, Distance
Vector Multicast Routing Protocol, RFC 1075, Internet
Working Group, November 1988.

[14] B. Waxman, "Routing of Multipoint Connections, "
IEEE Selected Areas in Communications, December 1988.

